
International Journal of Computer Trends and Technology Volume 72 Issue 8, 228-236, August 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I8P132 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Open Source and Open Targets: A Comprehensive

Analysis of Software Supply Chain Attacks in Open-

Source Software

Varadharaj Varadhan Krishnan

Independent Researcher, Washington, USA.

Corresponding Author: varadharaj.krishnan@gmail.com

Received: 07 July 2024 Revised: 04 August 2024 Accepted: 21 August 2024 Published: 31 August 2024

Abstract - Software supply chain attacks pose a significant threat to organizations worldwide. Open-source software enables

threat actors to amplify the impact further, and it creates unique challenges for organizations using Open-Source Software

(OSS). OSS-based supply chain attacks have a cascading impact, unlike a targeted attack on an organization. This paper provides

a comprehensive analysis of OSS-based software supply chain attacks from 2010 to 2022. An empirical analysis was performed

on the datasets available in the public domain. Advanced clustering analysis are used to identify distinct patterns in attack

vectors, code base types, and distribution vectors. The study highlights the diverse methods and targets of OSS-based supply

chain attacks. The findings from the analysis aim to empower security professionals with insights about the trends. They will be

useful in determining the focus areas when attempting to bolster defense against software supply chain attacks. The paper also

dives into the frameworks available for organizations to measure their maturity of defenses against supply chain attacks and

covers actionable mitigation strategies to bolster their defense against such attacks.

Keywords - Software supply chain attack, Open-source supply chain attack, Cybersecurity, Open-source, Cyber defense

strategies.

1. Introduction
Organizations worldwide are increasingly threatened by

software supply chain attacks. These attacks involve

compromising software updates, inserting malicious code into

legitimate software packages, or exploiting third-party

services and tools. They target the interconnected, global

nature of modern software development, compromising a

single link in the supply chain to impact numerous

downstream organizations and consumers. Modern software

development often involves multiple layers of contractors and

providers globally, who may not fully grasp the trust

customers place in their software and work products.

Historically, software supply chain breaches were rare and

typically executed by sophisticated attackers, often linked to

geopolitical adversaries. A prominent example is the

SolarWinds attack, attributed to the Russian APT group

APT29, also known as "Cozy Bear." However, in the past

three years, nearly two-thirds (61%) of U.S. businesses

experienced such attacks, with at least one key supplier being

compromised. These attacks have become a significant and

frequent issue for organizations worldwide. In 2023, the

barrier for successful software supply chain attacks lowered

further, with a notable increase continuing into 2024. These

attacks were prevalent across popular open-source projects,

especially npm and PyPI. In 2023, open-source package

repositories saw a 1,300% increase in such attacks compared

to 2020. Specifically, the Python Package Index (PyPI)

experienced a 400% rise in threat instances in just one year.

The landscape of supply chain attacks has broadened, enabling

both sophisticated nation-state actors and less resourceful

beginner threat actors to carry out attacks through open-source

projects. Federal efforts to enhance software security are still

in their early stages and mainly focus on federal contractors.

Thus, the responsibility for securing software supply chains

falls largely on the private sector and individual software

developers. This paper aims to help organizations understand

the dimensions and landscape of open-source software supply

chain risks and explores strategies to mitigate these threats.

2. Methodology
The primary dataset used for analysis in this paper is from

dfrlab.org. The dataset titled “Software Supply Chain

Security: The Dataset”, built by Will Loomis, Stewart Scott,

Trey Herr, Sara Ann Brackett, Nancy Messiah, and June Lee,

has a list of every software supply chain attack from 2010 to

2023. The analysis is detailed in section 4. The dataset covers

the date, attack or disclosure, affected code type, code location

and owner, codebase type, programming languages, attack

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Varadharaj Varadhan Krishnan / IJCTT, 72(8), 228-236, 2024

229

vector, technique used, impact, and scope. An empirical

analysis of the incidents was performed, and the manual

validation of the attacks using open-source code or

dependencies was performed to ensure the quality of the

dataset. Statistical analysis was performed using the available

attributes about an incident in the dataset. Manual analysis was

performed to derive Insights from the statistical and trend

analysis. It is important to distinguish software bugs from

malicious code or packages. Though software bugs are

common, they cannot be considered as a supply chain attack.

Anything done with malicious intent is considered an

incident. In the dataset, authors have taken measures to avoid

incidents that happened via normal software bug exploits.

Though technically, a vulnerability or a bug will not be

very different from an intentional code designed to perform a

malicious activity, the intention behind it matters. A manual

evaluation was performed on the 80 incidents attributed to

Open-Source Dependency compromise to ensure the quality

of the dataset used.

Fig. 1 Illustration of software supply chain attack vectors

3. Background Software Supply Chain Attacks
Software supply chain attacks exploit vulnerabilities in

the software development and distribution process. These

attacks can occur at any stage of the development lifecycle,

from its deployment to its use. Figure 2 is an illustration of

how a threat actor can compromise the source code to inject

malicious code that gets built and distributed via the software

vendor’s legitimate software.This type of attack has two

phases.

The first phase is the “Supplier Attack” phase; in this

phase, the attacker focuses on compromising one or more

suppliers. The second phase is “Customer Attack,” where the

attacker targets the final victims. Though these two phases are

part of the same attack, they differ significantly in techniques

used, vectors exploited, and time taken to perform the attack.

These supply chain attacks can be executed in various ways;

they generally fall into one of three categories: a. Target

development, b. Target deployment, and c. Target usage.

There are various techniques employed within each category.

Broadly, these attacks can be grouped into the following types:

3.1. Upstream Server Attacks

These attacks target systems located upstream from the

impacted users, like a software company’s servers. Threat

actors compromise these servers, inject malicious code into

legitimate software, and then make it available to the

consumers. This impacts the software development company

and its customers, who trust that the updates are safe.

3.2. Midstream Attacks

These attacks occur during the development lifecycle and

target the intermediate systems in the build pipeline. For

instance, ClickStudios Passwordstate software, an enterprise

password manager, was compromised during the development

stage when an attacker injected malicious code into its "in-

place upgrade" feature, resulting in software updates

delivering the payload to customer devices.

3.3. Dependency Confusion Attacks

These attacks exploit the use of private, internally created

software dependencies by registering a dependency with the

same name as the one used internally and then updating the

Software Distribution Package Build Code Repository Source Code Developer

Code Dependencies Other Dependencies

Malicious Code

Changes

Compromise Code

Repository
Compromise Build

Process
Insert Malicious

Package

Compromise Distribution

Channel

Compromised Dependencies

Varadharaj Varadhan Krishnan / IJCTT, 72(8), 228-236, 2024

230

malicious one with an incremented version number on public

software repositories. Software build systems are likely to

download the latest version of the dependencies during the

build stage, allowing the threat actor to inject malicious code

and perform further attacks.

3.4. CI/CD Pipeline Infrastructure Attacks

These types of attacks are aimed at the CI/CD)

Continuous Integration and Continuous Deployment) tools to

embed malicious payloads in the built artifact. A CI/CD

pipeline attack can be both an upstream and midstream server

type of attack. The compromised build pipeline is used to

inject malicious code into the source code or directly inject the

malicious binary into the final build artifact.

3.5. Open-Source Software Attacks

In this case, threat actors insert malicious code into open-

source software packages, which then spread to users who

utilize the package directly or include them in their final

product. The pervasive usage of open-source software and the

dependencies any modern software has on the open-source

software package make this type of attack have significant

real-world consequences.

4. Role of Open Source
Today, open-source usage is pervasive, and it provides

significant cost advantage and competitive advantage to many

software companies and software developers. Instead of

building everything from nothing, it allows software

developers to build software products by reusing existing

software packages, code modules, libraries, and tools. Open

source has been the driver for faster progress and accelerated

time-to-market. In a report published by The Linux

Foundation [16], about 70% to 90% of modern applications

have OSS components. The sheer number of dependencies

that a modern application has at various levels, from operating

systems, container dependencies, CI/CD tools, code libraries,

and development tools, make the management of external

dependencies daunting and overwhelming.

On the other side, this gives a perfect setup for threat

actors to target multiple victims. Compromising an open-

source software package results in wider impact and success

for threat actors. OSS-based Software Supply Chain Attacks

are becoming increasingly public and disruptive [4]. A report

published by Sonatype [14], State of Software Supply Chain,

shows that supply chain attacks have an average increase

of 742% per year.

ReversingLabs [18] published report [15] shows that in

2023 more than 11,000 malicious npm, PyPI, and RubyGems

were discovered in 2023. A 22% increase from 2022. when a

little more than 8,700 malicious packages were detected, the

number of malicious open-source packages is a sound and

definite metric to measure the open-source-based SSCA trend.

ReversingLabs also noted [7] the increasing use of open-

source platforms for malware campaigns, and it is becoming

increasingly bold. In 2023, they found direct deployments of

rootkits on developer systems using malicious npm packages.

They do expect more incidents like this and more bold tactics.

This makes it important for organizations and software

developers to understand the risks and take preventive

measures.

5. Anatomy of Software Supply Chain Attack

via Open-Source Software
Figure 2 illustrates the process of a software supply chain

attack using open-source software repositories. The attack

begins with a threat actor creating malicious code and

committing to the open-source project code repository. It

could be malicious code, config, or a simple link for phishing.

The threat actor injects this malicious code into an open-

source code repository and successfully gets it published to the

main branch.

Software developers across the globe using this open

project will download the malicious code when they attempt

to download the latest version of the source or download a

compiled binary from the latest source code. Developers then

package compromised code along with their product code,

thus compromising their organization's product, too. The

attacker is now able to compromise all users of the

compromised open-source project and the users of the

products that have the compromised OS code in them.

The collaborative nature of open-source development can

sometimes make it challenging to detect such malicious

injections promptly. Multiple organizations depend on open-

source projects, making them vulnerable to these attacks.

Once the malicious code is integrated into the organization’s

software build process, it will find a perfect vehicle to deliver

the product to trusted customers. Compromised OSS packages

can have far-reaching consequences, impacting not just the

initial organization using them but also their customers and

end-users who trust the integrity of the software provided by

the organization.

6. Findings from the study
The dataset used in this study is published by DFRLab

[19]. The dataset named “Software Supply Chain Security:

The Dataset”, published on September 27, 2023, by Will

Loomis, Stewart Scott, Trey Herr, Sara Ann Brackett, Nancy

Messieh, and June Lee, has a collated list of software supply

chain security incidents since 2010.

The dataset has incidents broken down by several criteria,

including scale and impact, date, responsible threat actors,

codebase type, and distribution vectors. The open-source

software incidents from this dataset are further manually

verified with publicly available sources to confirm the

accuracy.

Varadharaj Varadhan Krishnan / IJCTT, 72(8), 228-236, 2024

231

Fig. 2 Illustration of open-source software supply chain attack

6.1. Increasing Trend of OSS-Based Software Supply Chain

Attacks

A trend plotting of the incidents by the codebase types

involved in the supply chain attack shows an increase in the

trend of open-source attacks. The number of incidents caused

by malicious packages uploaded to public code registries has

increased significantly over the past few years, demonstrating

that attackers are increasingly adopting this tactic. A report

from Sonatype [14] also shows a corresponding increase in the

number of malicious open-source packages that have tripled

in recent years.

Table 1 shows the current state of open-source project

numbers, their projected growth rate and the download

metrics. With the continued increase in significant growth in

OSS projects and usage, the OSS-based supply chain attacks

will continue to increase.

 A new troubling problematic trend has emerged in the

software supply chain recently [19]. Tailor-made packages are

being designed to run a malicious payload on the download

without any developer interaction. This attack type relies on

developers not recognizing the fake package.

Fig. 2 Attacked codebase by year

Open Source

Code Repository

Threat Actor Malicious code

Open Source

Contributors

Develop

software

Organization C

Organization B

Organization A Build Code and

Package Software

Build Code and

Package Software

Build Code and

Package Software

Varadharaj Varadhan Krishnan / IJCTT, 72(8), 228-236, 2024

232

Table 1. Popular OSS package types and their usage and usage forecast

Ecosystem
Total

Projects

Total Project

Versions

2023 Annual Request

Volume Estimate

YoY Project

Growth

YoY Download

Growth

Average Versions

Released per Project

Java (Maven) 557K 12.2M 1.0T 28% 25% 22

JavaScript (npm) 2.5M 37M 2.6T 27% 18% 15

Python (PyPI) 475K 4.8M 261B 28% 31% 10

.NET (NuGet Gallery) 367K 6M 162B 28% 43% 17

To quantify the growth of OSS-based software supply

chain attacks over the period from 2010 to 2022, calculating

the Compound Annual Growth Rate (CAGR) can be used. The

CAGR provides a smoothed annual growth rate, eliminating

the effects of volatility and year-to-year fluctuations. CAGR

is calculated using the formula depicted in Figure 4.

Fig. 3 Compound annual growth rate

• Vfinal is the final value (the number of OSS-based attacks

in 2022).

• Vbegin is the initial value (the number of OSS-based

attacks in 2011).

• t is the number of years.

• Applying the values, we get CAGR = (45 / 2) ^ (1 / 11) -

1 ≈ 0.349348. Converting to a percentage: CAGR ≈

34.93%

6.2. Increasing Trend of OSS-Based Software Supply Chain

Attacks

The analysis of the complexity and impact of OSS-based

attacks shows that the majority of OSS-based attacks fall into

mid-range levels (levels 2 to 3), indicating that these attacks

require moderate effort to exploit. There are fewer attacks at

the extreme ends (levels 0 and 5), suggesting that very simple

or very complex attacks are less common in OSS. Many OSS-

based attacks target deeper levels in the stack (levels 3 to 5),

indicating that attackers often focus on fundamental

components of the software infrastructure. There is also a

notable number of attacks at mid-level (level 2), showing a

spread across different depths in the stack.

6.3. Clustering Analysis

A k-means clustering algorithm was used to group similar

types of code and codebases. The categorical variables were

first encoded, and then the clustering algorithm was applied.

Fig. 4 Distribution of ease of access in OSS-based SSCA

Fig. 5 Distribution of depth in the stack in OSS-based SSCA

Fig. 6 K-means clustering of types of code and codebases

Varadharaj Varadhan Krishnan / IJCTT, 72(8), 228-236, 2024

233

Codebase by

Distribution

Vector

First-Party

OS/Applications

First-Party

OS/Applications

Third-Party

Application

Third-

Party

Firmware

OSS
Attacker

Application
Unknown/NA

Typosquatting 0 1 0 22 18 0 0

Hijacked Updates 0 36 2 8 1 0 0

Proprietary

Application Store
0 9 0 0 21 1 0

Third-Party

Application Store
0 8 0 0 3 0 0

Open-Source

Dependency
0 2 1 74 18 0 0

Worm

Component
1 3 2 0 0 1 0

Hardware

Component
1 2 4 0 0 1 0

Direct Download 0 18 1 11 11 1 0

Phishing 0 4 1 1 5 0 0

Development

Software
0 11 1 5 0 0 0

Supply Chain

Service Provider
9 41 18 4 0 0 0

Unknown, N/A,

or Other
0 2 0 0 1 2 0

Fig. 7 Heatmap of codebase type and distribution vector

The K-Means clustering analysis revealed three distinct

clusters based on the types of code and codebases:

• Cluster 0 (Purple): This cluster represents a significant

portion of the data points and appears to be tightly

grouped, indicating common characteristics among these

types of code and codebases.

• Cluster 1 (Yellow): This cluster is more spread out,

suggesting a diverse set of characteristics.

• Cluster 2 (Green): This cluster also shows some spread,

indicating variation within this group.

The PCA components help us to visualize the clustering

of the types of code and codebases. It shows that there are

distinct groups that can be further investigated for specific

common patterns among the group members. OSS (Open-

Source Software) is the most targeted codebase. “OSS -

Attacker Application” follows next, indicating that attacks

often involve combining open-source components with

attacker applications. Also, npm packages are the most

frequently targeted, along with PyPI Packages.

6.4. Frequency-Based Analysis on Distribution Vector

The dataset contains normalized data about software

supply chain attack incidents from 2010 to 2022. A heatmap

distribution of those incidents by codebase type and

distribution vector reveals that third-party-provided software

that had an open-source dependency was the top combination,

resulting in the majority of the software supply chain security

incidents. A GitHub report from 2020 [17] shows that the

average amount of indirect dependencies for a JavaScript

project on GitHub is 683 for a project that uses an average

number of 10 direct dependencies. The JavaScript project has

now accumulated risk from the vulnerabilities present in direct

and indirect dependencies. Although these vulnerabilities may

not be malicious, they can still allow malicious actors to target

them. Dependencies remain one of the most preferred

mechanisms for creating and distributing malicious packages.

7. Secure Software Supply Chain
With the rise in open-source-based supply chain attacks,

knowing how to prevent and protect against such attacks is

necessary. While there is no silver bullet for this issue, a

systematic approach is needed to protect against these attacks.

S2C2F (Security Supply Chain Consumption Framework)

[18] outlines how to secure consumer open-source software

dependencies such as NPM and NuGet. In software

development, not all code and components of the software are

written by one team; often, existing software artifacts are used;

they are called third-party dependencies. A dependency could

be anything: source code, a language package, a module, a

component, a container, a library, or a binary. S2C2F provides

a framework to enhance an organization’s OSS consumption

governance posture with the aim of improving the overall

supply chain security posture. Open-source usage is pervasive

and used across the software industry. Developers are more

and more relying on OSS components to expedite delivery,

productivity, and even innovation cycles. The S2C2F provides

a maturity model-based implementation guide for

organizations. Organizations should use the maturity model to

assess their current state and work on moving to higher levels

of maturity defined in the mode.

Varadharaj Varadhan Krishnan / IJCTT, 72(8), 228-236, 2024

234

S2C2F uses a threat-based risk reduction approach to

achieve the following goals

1. Provide a strong OSS governance program.

2. Improve the Mean Time To Remediate (MTTR) to

resolve known vulnerabilities in OSS.

3. Prevent the consumption of compromised and malicious

OSS packages

The S2C2F is modeled after three core concepts: a.

control all artifact inputs, b. continuous process improvement,

and c. Scale.

Figure 9 is the maturity model based on the actionable

implementation controls. Level 4 is the highest in the maturity

model

Fig. 8 S2C2F maturity model

Organizations can achieve Level 1 maturity by using a

package caching solution, performing an OSS inventory,

scanning, and updating open-source software. These are the

most common set of controls most organizations have. At

Level 2 maturity, the focus is shifted further to improve

ingestion of configuration security, decreasing MTTR to patch

OSS vulnerabilities, and responding to incidents. The key

differentiator from Level 1 to Level 2 is the control available

to fix the known vulnerabilities in the OSS dependencies as

early as possible.

The ideal goal is for organizations to have capabilities to

patch faster than attackers can capitalize. At Level 3 – The

organization should proactively perform security analysis on

the organization's most used OSS components and reduce the

risk of consuming malicious packages. Actively scanning for

malware in the OSS package before use is one way to prevent

compromise. The next level, Level 4 is considered aspirational

in most cases as it is difficult to implement at scale. Rebuilding

OSS on trusted build infrastructure is a good defensive step to

ensure that the OSS was not compromised at build time. Build

time attacks are performed by the most sophisticated

adversaries; this this level of maturity is required to defend

against APT (Advanced Persistent Threats).

8. Threats and Mitigation Methods
Actions are needed from multiple IT and cybersecurity

organizations to protect against open-source software chain

attacks successfully. A vital aspect of that would be having a

strong review process before using a new OSS project. This

involves assessing the security posture of the code or

application, monitoring known vulnerabilities, and

determining the timelines for the fixes for those

vulnerabilities. Standards and ensuring they follow secure

development practices. Conduct regular audits and

evaluations to confirm that vendors maintain proper security

measures.Secondly, organizations should build an inventory

of all OSS or third-party application packages used in the

organization. An accurate inventory is the foundation for

automating various vulnerability assessment and malware

scan tasks. Establish a policy for open-source software

package consumption to avoid unchecked usage and

embedding into the products developed by the organization.

Encourage the practice of maintaining a Software Bill of

Material for all applications developed within the

organization, giving an opportunity for security teams to track

provenance and perform scans and other threat assessments.

Lastly, adopting a secure development process, limiting or

controlling importing and running unknown and unverified

• Use package managers
• Local copy of artifact

• Scan with known vulns

• Scan for software licenses
• Inventory OSS

• Manual OSS updates

Minimum OSS

Governance Program
Secure Consumption

and Improv ed MTTR

• Scan for end life

• Have an incident
 response plan

• Auto OSS updates

• Alert on vulns at PR
 time

• Audit that consumption

 is through the approved
 ingestion method

• Validate integrity of

 OSS
• Secure package source
 file configuration

Malware Defense and

Zero-Day Detection

• Deny list capability

• Clone OSS source

• Scan for malware
• Proactive security

 reviews

• Enforce OSS provenance
• Enforce consumption

 from curated feed

Advanced Threat

Defense

• Validate the SBOMs of
 OSS consumed

• Rebuild OSS on trusted

 infrastructure
• Digitally sign rebuilt OSS

• Generate SBOM for

 rebuilt OSS
• Digitally sign protected

 SBOMS

• Implement fixes

Level 1 Level 2 Level 3 Level 4

Varadharaj Varadhan Krishnan / IJCTT, 72(8), 228-236, 2024

235

code inside the organization. This includes conducting regular

code reviews, vulnerability assessments, and penetration

testing throughout the development stages. By eliminating or

looking for security issues early in the process, organizations

can reduce overall risk from OSS-based supply chain attacks.

Table 2 shows a list of threats and corresponding mitigation

strategies an organization should adopt to protect against

OSS-based software supply chain attacks.

Table 2. OSS supply chain threats and mitigation

Threats Mitigation

Vulnerabilities in OSS code

(include direct and indirect dependencies)

Automated patching

Make vulnerabilities visible to developers

New OSS project with malicious code
Security code reviews

Review incremental code added to the OSS repo.

Known good OSS project compromised.
Malware scans on code

Malware scans on the deployed environment.

Dependency confusion

(Malicious software packages named like the actual software packages)

Malware Scans

Implement SBOM (Software Bill of Material)

provenance.

OSS build environment compromised
Malware scans

Malware scans on the deployed environment.

Software distribution channels compromised.
A digital signature or hash verification

SBOM validation

Public repositories of OSS packages and libraries compromised or taken

down
Use package-caching solutions

9. Conclusion
In this paper, a comprehensive analysis was performed on

top of the supply chain attacks captured in the dataset from

DFRLabs and the public domain. Through empirical and

advanced clustering analysis of incidents from 2010 to 2022,

several key insights were drawn about the nature of the attack,

attack vectors, targets, and distribution vectors.

The paper finds a significant rise in OSS-based supply

chain attacks with a notable increase in threats targeting

repositories like npm and PyPI. The analysis also reveals that

OSS-based attacks typically require moderate effort to exploit,

but they are targeted at deeper levels in the software stack,

resulting in a cascading impact on a wide array of victims. The

clustering analysis also identified distinct patterns in attack

vectors and codebase types, showing common characteristics

among the various types of attacks. These insights will help

security professionals understand the trends and strategies

employed by the threat actors. The findings from this paper

will help security professionals with insights needed to create

focus areas for their defense efforts against software supply

chain attacks. The methods suggested to measure the maturity

of defenses against software supply chain attacks will aid in

assessing the current state and create a plan to bolster the

defense of an organization further. Lastly, the paper

emphasizes the need for continuous improvement in security

practices, including automated patching, vulnerability

assessments, and code reviews. In conclusion, this study offers

valuable insights and actionable strategies for mitigating the

risks associated with OSS-based supply chain attacks.

References
[1] John F. Miller, “Supply Chain Attack Framework and Attack Patterns,” MITRE Corporation, 2013. [Google Scholar]

[2] Ericka Chickowski, Evolution of AppSec: 4 Requirements for the Software Supply Chain Security era, ReversingLabs, 2024. [Online].

Available: https://content.reversinglabs.com/state-of-sscs-report/the-evolution-of-app-sec-sscs-era

[3] Ax Sharma, CSO Online, 6 Most Common Types of Software Supply Chain Attacks Explained, 2023. [Online]. Available:

https://www.csoonline.com/article/570743/6-most-common-types-of-software-supply-chain-attacks-explained.html

[4] Jaikumar Vijayan, ReversingLabs, Security Operations by the Numbers: 30 Cybersecurity Stats that Matter, 2024. [Online]. Available:

https://www.reversinglabs.com/blog/secops-by-the-numbers-stats-that-matter

[5] Snyk, 2023 Software Supply Chain Attacks Report. [Online]. Available: https://go.snyk.io/2023-supply-chain-attacks-report-dwn-

typ.html

[6] ReversingLabs, The state of Software Supply Chain Security Report, 2024. [Online]. Available: https://content.reversinglabs.com/state-

of-sscs-report/the-state-of-sscs-report-24

[7] Carolynn Van Arsdale, ReversingLabs, The State of Software Supply Chain Security 2024: Key Takeaways. [Online]. Available:

https://www.reversinglabs.com/blog/the-state-of-software-supply-chain-security-2024-key-takeaways

[8] European Union Agency for Cybersecurity (ENISA), Threat Landscape for Supply Chain Attacks. [Online]. Available:

https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Supply+Chain+Attack+Framework+and+Attack+Patterns&btnG=
https://content.reversinglabs.com/state-of-sscs-report/the-evolution-of-app-sec-sscs-era
https://www.csoonline.com/article/570743/6-most-common-types-of-software-supply-chain-attacks-explained.html
https://www.reversinglabs.com/blog/secops-by-the-numbers-stats-that-matter
https://go.snyk.io/2023-supply-chain-attacks-report-dwn-typ.html
https://go.snyk.io/2023-supply-chain-attacks-report-dwn-typ.html
https://content.reversinglabs.com/state-of-sscs-report/the-state-of-sscs-report-24
https://content.reversinglabs.com/state-of-sscs-report/the-state-of-sscs-report-24
https://www.reversinglabs.com/blog/the-state-of-software-supply-chain-security-2024-key-takeaways
https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks

Varadharaj Varadhan Krishnan / IJCTT, 72(8), 228-236, 2024

236

[9] Mackenzie Jackson, GitGuardian, Supply Chain Attack: 6 Steps to Harden your Software Supply Chain, 2021. [Online]. Available:

https://blog.gitguardian.com/supply-chain-attack-6-steps-to-harden-your-supply-chain/

[10] SLSA, Threats and Mitigations (version 1.0). [Online]. Available: https://slsa.dev/spec/v0.1/threats

[11] Clementine Maurice et al., “Backstabber’s Knife Collection: A Review of Open Source Software Supply Chain Attacks,” Detection of

Intrusions and Malware, and Vulnerability Assessment, pp. 23-43, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[12] Scott Ikeda, Open Source Software Supply Chain Attacks have Tripled, but Nearly all Vulnerabilities are Avoidable by Updating, 2023.

[Online]. Available: https://www.cpomagazine.com/cyber-security/open-source-software-supply-chain-attacks-have-tripled-but-nearly-

all-vulnerabilities-are-avoidable-by-updating/

[13] Justin Bahr, Security Boulevard, Top Software Supply Chain Security Solution Approaches: Pros and Cons, 2022. [Online]. Available:

https://securityboulevard.com/2022/11/top-software-supply-chain-security-solution-approaches-pros-and-cons/

[14] Sonatype, 9th Annual State of the Software Supply Chain Report Reveals Ways to Improve Developer, DevSecOps Efficiency. [Online].

Available: https://www.sonatype.com/en/press-releases/sonatype-9th-annual-state-of-the-software-supply-chain-report

[15] Sonatype, Open Source Supply, Demand, and Security. [Online]. Available: https://www.sonatype.com/state-of-the-software-supply-

chain/open-source-supply-and-demand

[16] Sonatype, 9th Annual State of the Software Supply Chain Report. [Online]. Available: https://www.sonatype.com/hubfs/9th-Annual-

SSSC-Report.pdf

[17] Trend Micro, Improving Software Supply Chain Security, 2022. [Online]. Available:

https://www.trendmicro.com/en_us/ciso/22/l/software-supply-chain-security.html

[18] Dominik Wermke et al., “"Always Contribute Back": A Qualitative Study on Security Challenges of the Open Source Supply Chain,”

2023 IEEE Symposium on Security and Privacy, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[19] DFRLab, Software Supply Chain Security: The Dataset, 2023. [Online]. Available: https://dfrlab.org/2023/09/27/software-supply-chain-

security-the-dataset/

[20] Sonatype, A History of Software Supply Chain Attacks. [Online]. Available: https://www.sonatype.com/resources/vulnerability-timeline

[21] The Linux Foundation, Brian Behlendorf Testifies on Open Source Software Security to the US House Committee on Science and

Technology, 2022. [Online]. Available: https://www.linuxfoundation.org/blog/blog/lf/brian-behlendorf-testifies-open-source-software-

security

[22] GitHub, Best Practices to Keep your Projects Secure on GitHub. [Online]. Available: https://github.blog/security/supply-chain-

security/best-practices-to-keep-your-projects-secure-on-github/

[23] OpenSSF, Secure Supply Chain Consumption Framework (S2C2F) Simplified Requirements. [Online]. Available:

https://github.com/ossf/s2c2f/blob/main/specification/framework.md

[24] Betul Gokkaya, Leonardo Aniello, and Basel Halak, Software Supply Chain: Review of Attacks, Risk Assessment Strategies and Security

Controls. [Online]. Available: https://arxiv.org/pdf/2305.14157

[25] Piergiorgio Ladisa et al., Taxonomy of Attacks on Open-Source Software Supply Chains. [Online]. Available:

https://arxiv.org/pdf/2204.04008

[26] David Uhler Brand, and Oliver Stussi, “Supply Chain Attacks in Open Source Projects,” Master Thesis, Lund University. [Google

Scholar]

[27] ArXiv, Preprint 2405.14993v2, 2024. [Online]. Available: https://arxiv.org/html/2405.14993v2

https://blog.gitguardian.com/supply-chain-attack-6-steps-to-harden-your-supply-chain/
https://slsa.dev/spec/v0.1/threats
https://doi.org/10.1007%2F978-3-030-52683-2_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Backstabber%E2%80%99s+Knife+Collection%3A+A+Review+of+Open+Source+Software+Supply+Chain+Attacks&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://www.cpomagazine.com/cyber-security/open-source-software-supply-chain-attacks-have-tripled-but-nearly-all-vulnerabilities-are-avoidable-by-updating/
https://www.cpomagazine.com/cyber-security/open-source-software-supply-chain-attacks-have-tripled-but-nearly-all-vulnerabilities-are-avoidable-by-updating/
https://securityboulevard.com/2022/11/top-software-supply-chain-security-solution-approaches-pros-and-cons/
https://www.sonatype.com/en/press-releases/sonatype-9th-annual-state-of-the-software-supply-chain-report
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-and-demand
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-and-demand
https://www.sonatype.com/hubfs/9th-Annual-SSSC-Report.pdf
https://www.sonatype.com/hubfs/9th-Annual-SSSC-Report.pdf
https://www.trendmicro.com/en_us/ciso/22/l/software-supply-chain-security.html
https://doi.org/10.1109/SP46215.2023.10179378
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9C%22Always+Contribute+Back%22%3A+A+Qualitative+Study+on+Security+Challenges+of+the+Open+Source+Supply+Chain&btnG=
https://ieeexplore.ieee.org/abstract/document/10179378
https://dfrlab.org/2023/09/27/software-supply-chain-security-the-dataset/
https://dfrlab.org/2023/09/27/software-supply-chain-security-the-dataset/
https://www.sonatype.com/resources/vulnerability-timeline
https://www.linuxfoundation.org/blog/blog/lf/brian-behlendorf-testifies-open-source-software-security
https://www.linuxfoundation.org/blog/blog/lf/brian-behlendorf-testifies-open-source-software-security
https://github.blog/security/supply-chain-security/best-practices-to-keep-your-projects-secure-on-github/
https://github.blog/security/supply-chain-security/best-practices-to-keep-your-projects-secure-on-github/
https://github.com/ossf/s2c2f/blob/main/specification/framework.md
https://arxiv.org/pdf/2305.14157
https://arxiv.org/pdf/2204.04008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Supply+chain+attacks+in+open+source+projects&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Supply+chain+attacks+in+open+source+projects&btnG=
https://arxiv.org/html/2405.14993v2

